| Authors |
Il'ya V. Boykov, Doctor of physical and mathematical sciences, professor, head of the sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), boikov@pnzgu.ru
Georgiy Yu. Salimov, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), salimovgorik@mail.ru
|
| Abstract |
Background. Despite Gibbs effect (phenomenon) was discovered almost 170 years ago, the amount of works devoted to its research and the construction of methods of its suppression has not weakened until recently. This is due to the fact that the Gibbs effect has a negative impact on the study of many wave processes in hydrodynamics, electrodynamics, microwave technology, and computational mathematics. Therefore, the construction of new methods for suppressing the Gibbs effect is an issue of the day. In addition, several computational schemes for solving the Gibbs problem in one particular formulation are proposed. Materials and methods. Methods of approximation theory were used in the construction of computational schemes. In particular, the properties of Bernstein polynomials were used in the approximation of integer functions. Results. The review of works devoted to the study of the Gibbs effect and methods of constructing filters that suppress this effect is presented. The review includes: historical background on the study of the Gibbs effect; various methods of suppressing the Gibbs effect; methods of building filters; descriptions of the manifestation of the Gibbs effect in technology. Conclusions. The possibility of applying Bernstein polynomials to the solution of the Gibbs problem in
the case of analytic nonperiodic functions given by values in equally spaced nodes is demonstrated. These results can be used in solving the problem of suppressing the Gibbs effect in other formulations.
|
| References |
1. Zommerfel'd A. Differentsial'nye uravneniya v chastnykh proizvodnykh fiziki = Partial differential equations of physics. Moscow: Izd-vo inostr. lit-ry, 1950:458. (In Russ.)
2. Willbraham H. CambrigeandDublinMath. Journ. 1848;3:198–201.
3. Carslaw H. A historical note on Gibbs' phenomenon in Fourier's series and integrals. Bull. Amer. Math. Soc. 1925;31:420–424.
4. Michelson A., Stratton S. A new harmonic analyser. Philos. Mag. 1898;45:85–91.
5. Gottlieb D. Shu C. W. The Gibbs phenomenon and its resolution. SIAM Review. 1997;39:644–668.
6. Lanczos C. Discourse on Fourier Series, Hafner Publishing Company. New York, 1966.
7. Gibbs J. W. Fourier's Series. Nature. 1898;59(1522):200.
8. Gibbs J. W. Fourier's Series. Nature. 1899;59(1539):606.
9. Bocher M. Introduction to the theory of Fourier's series. Ann. Math. 1906;7:81–152.
10. Maxime B. Introduction to the theory of Fourier s series. Ann. Math. 1906;7:81–152.
11. Wilton J. The Gibbs phenomenon in series of Schlӧmlich type. Messenger of Math. 1926;56:175–181.
12. Wilton J. The Gibbs phenomenon in Fourier-Bessel series. J. Reine Angew. Math. 1928;159:144–153.
13. Cook R. Gibbs's phenomenon in Fourier-Bessel series and integrals. Proc. London Math. Soc. 1928;27:171–192.
14. Cook R. Gibbs's phenomenon in Schl?omlich series. J. London Math. Soc. 1928;4:18– 21.
15. Weyl H. Die Gibbssche Erscheinung in der Theorie der Kugelfunktionen, Gesammeete Abhandlungen. Berlin: Springer-Verlag, 1968:305–320.
16. Richards F.B. A Gibbs phenomenon for spline functions. J. Approx. Theory. 1991;66: 334–351.
17. Shim H.T. A summability for Meyer wavelets. J. Appl. Math. Comput. 2002;9:657–666.
18. Shen X. On Gibbs phenomenon in wavelet expansions. J. Math. Study. 2002;35:343– 357.
19. Shen X. Gibbs Phenomenon for Orthogonal Wavelets with Compact Support. In Advances in the Gibbs Phenomenon. Sampling Publishing. Germany, Potsdam,
2011:337–369.
20. Han B. Gibbs Phenomenon of Framelet Expansions and Quasi-projection Approximation. J. Fourier Anal. Appl. 2018;25(40). doi:10.1007/s00041-019-09687-9
21. Mohammad M., Lin E.B. Gibbs phenomenon in tight framelet expansions. Commun. Nonlinear Sci. Numer. Simul. 2018;55:84–92.
22. Gribonval R., Nielsen M. On approximation with spline generated framelets. Constr. Approx. 2004;20:207–232.
23. Ding Meiyu, Zhu Hongqing. Two-Dimensional gibbs phenomenon for fractional fourier series and its resolution. AICI'12: Proceedings of the 4th international conference on Artificial Intelligence and Computational Intelligence. 2012:530–538. Available at: https://doi.org/10.1007/978-3-642-33478-866
24. Li B., Chen X. Wavelet-based numerical analysis: A review and classification. Finite Elem. Anal. Des. 2014;81:14–31.
25. Barg A., Glazyrin A., Okoudjou K.A., Yu W. Finite two-distance tight frames. Linear Algebra Appl. 2015;475:163–175.
26. Ganiou A., Atindehou D., Kouagou Y.B., Okoudjou K.A. On the frame set for the 2- spline. arXiv 2018, arXiv:1806.05614.
27. Hussein R., Shaban K., El-Hag H. Energy conservation-based thresholding for effective wavelet denoising of partial discharge signals. Sci. Meas. Technol. IET. 2016;10:813– 822.
28. Hewitt E. and Hewitt R. The Gibbs-Wilbraham phenomenon: An episode in Fourier analysis. Hist. Exact Sci. 1979;21:129–160.
29. Gelb A. and Tadmor E. Detection of edges in spectral data. Applied Computational Harmonic Analysis. 1999;7:101–135 .
30. Gelb A. and Tadmor E. Detection of edges in spectral data II. Nonlinear Enhancement. SIAM Journal on Numerical Analysis. 2000;38(4):1389–1408.
31. Gottlieb D., Shu C. W., Solomonoff A., Vandeven H. On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a non-periodic analytic function. Journal of Computational and Applied Mathematics. 1992;43:81–98.
32. Vandeven H. Family of spectral filters for discontinuous problems. SIAM Journal on Scientific Computing. 1991;48:159–192.
33. Gelb A., Gottlieb S. The resolution of the Gibbs phenomenon for Fourier spectral methods. Available at: https://www.researchgate.net/publication/228711336
34. Gottlieb D. and Shu C.W. General theory for the resolution of the Gibbs phenomenon, Accademia Nazionale Dei Lincey. ATTI Dei Convegni Lincey. 1998;147:39–48.
35. Soyfer V. A. (ed.). Metody komp'yuternoy obrabotki izobrazheniy = Methods of computer image processing. Moscow: Fizmatlit, 2001:784. (In Russ.)
36. Hartley R., Zisserman A. Multiple View Geometry in Computer Vision. 2 ed. OUP. Cambridge, 2003.
37. Fejer L. Undersuchunder uber Fouriersche Reihen. Math. Ann. 1904;58:501–569.
38. Natanson I.P. Konstruktivnaya teoriya funktsiy = Constructive theory of functions. Moscow; Leningrad: GITTL, 1949:688. (In Russ.)
39. Damen V. Best approximation and de la Vallée-Poisson sums. Matematicheskie zametki = Mathematical notes. 1978;23(5):671–684. (In Russ.)
40. Baskakov V.A. Approximation of classes of C(ξ) functions with the help ofVallée- Poussin sums and linear polynomial operators. Izvestiya vuzov. Matematika = University proceedings. Mathematics. 1984;(5):19–24. (In Russ.)
41. Kantorovich L.V. On the convergence of polynomials S.N. Bernstein outside the mainstream. Izvestiya Akademii nauk SSSR. Seriya fiz.-mat. = Proceedings of the USSR Academy of Sciences. Physical and mathematical series. 1931:1103–1115. (In Russ.)
|